1.4. Полупроводники
Полупроводники - вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106-104 Ом-l см-l) и диэлектриков (10-8-10-12 Ом-l). Характерная особенность полупроводников – возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют свет, сильное электрическое поле, потоки быстрых частиц и т. д. Высокая чувствительность электропроводности к содержанию примесей и дефектов в кристаллах также характерна для полупроводников. К полупроводникам относится большая группа веществ (Ge, Si и др.). Носителями заряда в полупроводниках являются электроны проводимости и дырки. В идеальных кристаллах они появляются всегда парами, так что их концентрации равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимости осуществляется практически только одним типом носителей. Особенности полупроводников определяют их применение.
Терминология и основные понятия
Полупроводники, или полупроводниковые соединения, бывают собственными и примесными.
Собственные полупроводники — это полупроводники, в которых нет примесей (доноров и акцепторов). Собственная концентрация ni - концентрация носителей заряда в собственном полупроводнике (электронов в зоне проводимости n и дырок в валентной зоне r, причем n = р = ni. При Т = 0 в собственном полупроводнике свободные носители отсутствуют (n = р = 0). При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости. Эти электроны и дырки могут свободно перемещаться по энергетическим зонам. Дырка — это способ описания коллективного движения большого числа электронов (примерно) в неполностью заполненной валентной зоне. Электрон — это частица, дырка — это квазичастица. Электрон можно инжектировать из полупроводника или металла наружу (например, с помощью фотоэффекта), дырка же может существовать только внутри полупроводника.
Легирование — введение примеси в полупроводник, в этом случае полупроводник называется примесным. Если в полупроводник, состоящий из элементов 4 группы (например, кремний или германий), ввести в качестве примеси элемент 5 группы, то получим донорный полупроводник (у него будет электронный тип проводимости), или полупроводник n-типа. Если же ввести в качестве примеси элемент 3 группы, то получится акцепторный полупроводник, обладающий дырочной проводимостью (р-тип).
Для того чтобы использовать для описания движения электронов и дырок в полупроводниках классические представления, вводятся понятия эффективных масс электрона u дырки m.n и m.p соответственно. В этом случае уравнения механики а = F/m*, или dp/dt = F, будут справедливы, если вместо массы свободного электрона (электрона в вакууме) то в эти уравнения подставить эффективную массу электрона m.n (р = m.n* v).
Эффективная масса учитывает влияние периодического потенциала атомов в кристалле полупроводника на движение электронов и дырок и определяется уравнениями дисперсии.
Рисунок 1.41. Энергетические схемы полупроводников n-типа и р-типа
Зонная структура полупроводников
Согласно постулатам Бора энергетические уровни для электронов в изолированном атоме имеют дискретные значения. Твердое тело представляет собой ансамбль отдельных атомов химическая связь между, которыми объединяет их в кристаллическую решетку. Если твердое тело состоит из N атомов, то энергетические уровни оказываются N-кратно вырожденными. Электрическое поле ядер, или остовов атомов, выступает как возмущение, снимающее это вырождение. Дискретные моноэнергетические уровни атомов, составляющие твердое тело, расщепляются в энергетические зоны. Решение квантовых уравнений в приближении сильной или слабой связи дает качественно одну и ту же картину для структуры энергетических зон твердых тел. В обоих случаях разрешенные и запрещенные состояния для электронов чередуются и число состояний для электронов в разрешенных зонах равно числу атомов, что позволяет говорить о квазинепрерывном р - определении энергетических уровней внутри разрешенных зон.
Наибольшее значение для электронных свойств твердых тел играют верхняя и следующая за ней разрешенные зоны энергий. В том случае, если между ними нет энергетического зазора, то твердое тело с такой зонной структурой является металлом. Если величина энергетической щели между этими зонами (обычно называемой запрещенной зоной) больше 3 эВ, то твердое тело является диэлектриком. И, наконец, если ширина запрещенной зоны Eg лежит в диапазоне (0,1 - 3,0) эВ, то твердое тело принадлежит к классу полупроводников. В зависимости от сорта атомов, составляющих твердое тело, и конфигурации орбит валентных электронов реализуется тот или иной тип кристаллической решетки, а, следовательно, и структура энергетических зон. На рисунке 1.41 приведена структура энергетических уровней в изолированном атоме кремния, а также схематическая структура энергетических зон, возникающих при сближении этих атомов и образовании монокристаллического кремния с решеткой так называемого алмазоподобного типа.
Верхняя, не полностью заполненная, энергетическая зона в полупроводниках получила название зоны проводимости. Следующая за ней энергетическая зона получила название валентной зоны. Энергетическая щель запрещенных состояний между этими зонами называется запрещенной зоной. на зонных диаграммах положение дна зоны проводимости обозначают значком - Ес, положение вершины валентной зоны - Ev, а ширину запрещенной зоны - Eg.
Поскольку в полупроводниках ширина запрещенной зоны меняется в широком диапазоне, то вследствие этого в значительной мере меняется их удельная проводимость. По этой причине полупроводники классифицируют как вещества, имеющие при комнатной температуре удельную электрическую проводимость γ от 10-8 до 106 Ом*см, которая зависит в сильной степени от вида и количества примесей, структуры вещества и внешних условий: температуры, освещения (радиации), электрических и магнитных полей и т.д.
Для диэлектриков ширина запрещенной зоны Eg > 3 эВ, величина удельной проводимости γ < 10-8 Ом. см, удельное сопротивление р = 1/γ > 108 Ом* см. Для металлов величина удельной проводимости γ > 106 Ом* см.
Проводимость полупроводников
При приложении электрического поля к однородному полупроводнику в последнем протекает электрический ток. При наличии двух типов свободных носителей - электронов и дырок - проводимость γ полупроводника будет определяться суммой электронной gn и дырочной gp компонент проводимости:
g = gn + gp.
Величина электронной и дырочной компонент в полной проводимости определяется классическим соотношением: gn = mnn 0q; gp = mp p0q где mn и mp - подвижности электронов и дырок соответственно.
Для легированных полупроводников концентрация основных носителей всегда существенно больше, чем концентрация неосновных носителей, поэтому проводимость таких полупроводников будет определяться только компонентой проводимости основных носителей. Так, для полупроводника n-типа
g = gn + gp = g n
Величина, обратная удельной проводимости, называется удельным сопротивлением:
Здесь ρ - удельное сопротивление, обычно измеряемое в единицах [Ом см]. Для типичных полупроводников, используемых в производстве интегральных схем, величина удельного сопротивления находится в r = (1-10) Ом см.
Получаем
где - концентрация доноров в полупроводнике n- типа в условиях полной ионизации доноров, равная концентрации свободных электронов n 0.
В отраслевых стандартах для маркировки полупроводниковых пластин обычно используют следующее сокращенное обозначение типа: КЭФ-4,5. В этих обозначениях первые три буквы обозначают название полупроводника, тип проводимости, наименование легирующей примеси. Цифры после букв означают удельное сопротивление, выраженное во внесистемных единицах, - Ом см. Например, ГДА-0,2 — германий, дырочного типа проводимости, легированный алюминием, с удельным сопротивлением r = 0,2 Ом см; КЭФ-4,5 — кремний, электронного типа проводимости, легированный фосфором, с удельным сопротивлением r = 4,5 Ом см.
Примесная проводимость
Один и тот же полупроводник обладает либо электронной, либо дырочной проводимостью — это зависит от химического состава введенных примесей. Примеси оказывают сильное воздействие на электропроводимость полупроводников: так, например, тысячные доли процентов примесей могут в сотни тысяч раз уменьшить их сопротивление. Этот факт, с одной стороны, указывает на возможность изменение свойств полупроводников, с другой стороны, он свидетельствует о трудностях технологии при изготовлении полупроводниковых материалов с заданными характеристиками.
Рассматривая механизм влияния примесей на электропроводимость полупроводников, следует рассматривать два случая:
Электронная проводимость
Добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью или полупроводник n - типа (от латинского слова «негативус» — «отрицательный»). Примеси, создающие такую электропроводимость называют донорами.
Дырочная проводимость
Добавка в тот же германий алюминия, галлия или индия создает в кристалле избыток дырок. Тогда полупроводник будет обладать дырочной проводимостью — полупроводник p - типа.
Дырочная примесная электропроводимость создается атомами, имеющими меньшее количество валентных электронов, чем основные атомы. Подобные примеси называются акцепторными.
Токи в полупроводниках
Проводимость, а, следовательно, и ток в полупроводниках обусловлены двумя типами свободных носителей. Кроме этого, также есть две причины, обуславливающие появление электрического тока - наличие электрического поля и наличие градиента концентрации свободных носителей. С учетом сказанного плотность тока в полупроводниках в общем случае будет суммой четырех компонент:
J = Jp + Jn = jpE + jpD + jnE + jnD,
где J – плотность тока, jnE - дрейфовая компонента электронного тока, jnD - диффузионная компонента электронного тока, jpE - дрейфовая компонента дырочного тока, jpD - диффузионная компонента дырочного тока.
Выражение для каждой из компонент тока дается следующими соотношениями:
где Dn - коэффициент диффузии электронов, связанный с подвижностью электронов mn соотношением:
Аналогичные соотношения существуют для коэффициентов диффузии дырок Dp и подвижности дырок mp.
Использование полупроводников
Наиболее важные для техники полупроводниковые приборы — диоды, транзисторы, тиристоры основаны на использовании замечательных материалов с электронной или дырочной проводимостью.
Широкое применение полупроводников началось сравнительно недавно, а сейчас они получили очень широкое применение. Они преобразуют световую и тепловую энергию в электрическую и, наоборот, с помощью электричества создают тепло и холод. Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе - лазере, в крошечной атомной батарее и в микропроцессорах. Инженеры не могут обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.
Полупроводниковые диоды
Полупроводниковым диодом называют нелинейный электронный прибор с двумя выводами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольтамперной характеристики свойства полупроводниковых диодов бывают различными. В данном разделе будут рассмотрены следующие типы полупроводниковых диодов: выпрямительные диоды на основе р-n перехода, стабилитроны, варикапы, туннельные и обращенные диоды.
Транзисторы
Биполярный транзистор представляет собой полупроводниковый прибор, состоящий из трёх областей с чередующимися типами электропроводности, пригодный для усиления мощности.
Эти области разделяются электронно-дырочными переходами (э-д переходами). Особенность транзистора состоит в том, что между его э-д переходами существует взаимодействие — ток одного из электродов может управлять током другого. Такое управление возможно, потому что носители заряда, инжектированные через один из э-д переходов могут до другого перехода, находящегося под обратным напряжением, и изменить его ток.
Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:
1. Режим отсечки — оба электронно-дырочных перехода зaкpыты, при этом через транзистор обычно идёт сравнительно небольшой ток;
2. Режим насыщения — оба электронно-дырочных перехода открыты;
3. Активный режим — один из электронно-дырочных переходов открыт, а другой закрыт.
В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причём транзистор может выполнять функции активного элемента электрической схемы.
Область транзистора, расположенная между переходами, называется базой (Б). Примыкающие к базе области чаще всего делают неодинаковыми. Одну из них изготовляют так, чтобы из неё наиболее эффективно происходила инжекция в базу, а другую - так, чтобы соответствующий переход наилучшим образом осуществлял экстракцию инжектированных носителей из базы. Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером (Э), а соответствующий переход эмиттерным. Область, основным назначением которой является экстракцией носителей из базы — коллектор (К), а переход коллекторным.
Если на Э переходе напряжение прямое, а на К переходе обратное, то включение транзистора считают нормальным, при противоположной полярности — инверсным.
Основные характеристики транзистора определяются в первую очередь процессами, происходящими в базе. В зависимости от распределения примесей в базе может присутствовать или отсутствовать электрическое поле. Если при отсутствии токов в базе существует электрическое поле, которое способствует движению не основных носителей заряда от Э к К, то транзистор называют дрейфовым, если же поле в базе отсутствует — бездрейфовый (диффузионный).
1.5. Ферромагнетизм
Природа ферромагнетизма
Возникновение магнитных свойству ферромагнетиков связано с их доменным строением. Домены — это области самопроизвольной намагниченности, возникающие даже в отсутствии внешнего магнитного поля, в которых магнитные моменты атомов ориентированы параллельно.
Атомы или ионы приобретают магнитный момент, как правило, если они имеют некомпенсированные спины электронов. Например, в атомах железа на внутренней 3d – оболочке имеется четыре некомпенсированных спина. Так как самопроизвольная намагниченность относится к внутриатомным явлениям, то ее природа может быть установлена только на основе квантово–механических понятий.
По Я.И. Френкелю и В. Гейзенбергу главную роль в возникновении ферромагнитного состоянию играют силы обменного взаимодействия между атомами, имеющие квантовый характер и по происхождению являющиеся электростатическими.
Энергию А, возникающую в результате обмена электронами обмена электронами родственных атомов, называют обменной энергией или интегралом обменной энергии. При положительном интегралом обменной энергии А на рисунке 1.42, что соответствует минимуму электростатической энергии, возникает параллельная ориентация спинов. При отрицательном знаке А энергетически выгодно антипараллельное расположение спинов. Численное значение и знак интеграла А зависит от степени перекрытия электронных оболочек, то есть зависит от расстояния между атомами.
Рисунок 1.42. Зависимость интеграла обменной энергии А от отношения межатомного расстояния а к диаметру незаполненной электронной оболочки d
На рисунке показано изменение интеграла обменной энергии в функции от отношения межатомного расстояния к диаметру незаполненной электронной оболочки d. При переходе а/d > 1,5 происходит переход от антиферромагнитного состояния к ферромагнитному. Эта зависимость позволила обнаружить ферромагнетизм у сплавов марганца с неферромагнитным висмутом, сурьмой, серой и т.д.
Хотя максимум обменного взаимодействия в металлах носит более сложный характер, чем это следует из теории Френкеля-Гейзенберга, данная теория позволяет качественно объяснить причину незаполненных внутренних электронных оболочек, радиус которых должен быть мал по сравнению с расстоянием между ядрами в решетке.
Доменная структура
Каждый реальный магнитный материал разделен по всему объему на множество замкнутых областей – доменов, в каждом из которых самопроизвольная намагниченность од6нородна и направлена по одной из осей легкой намагниченности.
Рисунок 1.43. Стенка Блоха
Такое состояние энергетически выгодно и кристалл в целом немагнитен, так как магнитные моменты доменов ориентированы в пространстве равновероятно. Между соседними доменами возникают граничные слои (стенки Блоха). Внутри доменных стенок векторы намагниченности плавно поворачиваются на рисунке 1.43. Объем доменов может колебаться в широких пределах от 10 -1 до 10 -6 см³.
Ширина границ между антипараллельными доменами для железа 13·10 -8 м, то есть около 500 элементарных ячеек. Толщина границы зависит главным образом от соотношения энергий: обменной. Магнитной, анизотропии и магнитоупругой. Размеры самих доменов зависят от неметаллических включений, границ зерен, скоплений дислокаций и других неоднородностей. Обычно домены имеют правильную форму.
На рисунке 1.44 показана идеализированная доменная структура кристаллического ферромагнетика. Доменная структура поликристалла приведены на рисунке 1.45.
В магнитных материалах, предназначенных для устройств записи и хранения информации, создаются изолированные цилиндрические магнитные домены (ЦМД). На Рис. 1.44 показаны ЦМД в тонкой магнитной пленке. Емкость отдельного ЦМД - элемента может достигать 105 бит. В отсутствии внешнего магнитного поля смещение в ЦМД – материалах доменная структура.
Рисунок 1.44. Идеализированная доменная структура кристаллического ферромагнетика
Рисунок 1.45 Доменная структура поликристалла
Структура ферромагнетиков
Ферромагнетики в основном кристаллизируются в трех типах решеток: кубической, пространственной, кубической объемно-центрированной и гексонольной, показанной на рисунке 1.46.
Зависимости В=f(Н) показывают, что кристаллы являются магнитоанизотропными. На рисунке эта зависимость показана для железа. Направления намагничивания указаны в квадратных скобках. При отсутствии внешнего поля векторы намагничивания располагаются в легком направлении.
Площадь, заключенная между кривыми легкого и трудного намагничивания, пропорциональна энергии, которую требуется затратить для изменения направления намагничивания от легкого до трудного.